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ABSTRACT
This article contributes to the improvement of natural user inter-
faces (NUI) using depth-based kinematics recognition tools like the
Microsoft Kinect. The proposed method, “AccuMotion” is com-
prised of tracking sequential key poses as accumulated motion. The
AccuMotion recognition algorithm is based on multiple kinematics
evaluation functions that evaluate the dot products of target bone
structures with the user’s kinematic bone structure. Each function
continuously outputs a similarity ratio between its respective target
and input from the user’s kinematic data. Target bone structures are
defined by the developers as ideal or arbitrary values. This method
is effective for a wide range of users due to its use of a kinematics
data that allows for differences of length in user bones. The same
target poses apply to a wide range of users through the use of a
generic algorithm and user profiling. As an experiment, the recog-
nition function was tested for four directional inputs indicated by
user arm movements. The results suggest AccuMotion is suitable
for navigating presentation software such as slideshows and video
players with solid stability.

Categories and Subject Descriptors
H.1.2 [Information Systems]: User/Machine SystemsHuman in-
formation processing; H.5.2 [User Interfaces]: Interaction styles;
I.3.6 [Methodology and Techniques]: Interaction techniques
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Algorithms
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1. MOTIVATION
Recently, applications of natural user interfaces (NUI) have been
growing in fields such as augmented reality, video games, digital-
signage, experimental advertising, installation-based museum ex-
hibitions, physical exercising and rehabilitation, modeling, secu-
rity, and accessibility solutions for people with disabilities. Depth-
based kinematics sensors like the Microsoft Kinect [9, 10, 11, 16,
17, 18, 2] are major breakthroughs for helping developers real-
ize NUI applications. The Kinect sensor in particular provides
the benefits of stable mass production and open source availability
with APIs like OpenNI [5], PrimeSense NiTE middleware [3], and
Kinect for Windows SDK Beta [1]. While these APIs allow easy
access to user kinematics data, they do not offer advanced support
for interaction design within the application layer. Each application
must implement its interaction method which may be difficult for
the user to learn if not done intuitively. Especially for kinematics-
based recognition, developers must pay close attention to physical
traits of the user, such as arm length or movement speed. Ideally,
the development of a generic method that allows for the interactive
movements of a wide range of users would benefit the growth of
spatial gesture NUIs into new fields.

2. RELATED WORKS
In the video game industry, Omek Interactive reported success in
“blending full-body tracking and gesture animation” [6]. The re-
sult was an impressive realization of synchronous avatar animation
by interpolating pre-recorded motion data with depth-based real-
time motion capture data. They also released the Omek Beckon
Development Suite [4] middleware and SDK to make their algo-
rithms available to application developers. Such NUIs will be made
more popular by the current video game industry with the creation
of game content and by experimental applications for everyday liv-
ing.
Poupyrev’s “The go-go interaction technique” contributed non-linear
mapping for direct manipulation within a virtual environment [14].
This technique uses a hand icon to manipulate objects inside a vir-
tual environment. Ray is trying to reuse such interaction in a virtual
reality toolkit [15]. In a natural living space, however, it is difficult
to define which motions should be recognized as deliberate com-
mands because user activity is based on a mix of both conscious and
unconscious motion. With touch panel user interfaces like those on
smart phones, “flick” actions are popularly used for input related to



direction or speed. However, flicks require the user to be touching
a physical panel and so are easier to detect than natural spatial ges-
turing. When only using motion vector data of user bones, spatial
gesturing has relatively less discernible clues for indicating delib-
erate commands from the user.
Norrie suggests “virtual sensors”, a method for rapidly prototyping
ubiquitous interaction between a mobile phone and a Kinect sensor
[13]. Establishing such virtual sensors throughout a living space
may provide ideal conditions for a sensing system, but not for an
interaction system since natural gesticulations may be falsely rec-
ognized as deliberate commands. Recognition results should be bi-
nary output determined by the evaluation of virtual switches, so it
is important to focus on digital input commands rather than analog
ones for spatial interaction.

3. RECOGNITION OF “ACCUMOTION”

Figure 1: AccuMotion Concept: all target sequences start from
the starting pose f0

One advantage of a spatial gesturing NUI is the freedom of pro-
viding natural input without requiring any wearable devices. This
does not however suggest inputs should be limited to unregulated
analog commands. A new approach adopts this point of view us-
ing sequential key poses to improve user affinity with an avatar

and enhance the sense of immersion within a virtual environment.
This technique has been illustrated by the previous research of the
GAMIC [12] and CartooNect [8, 7]projects using a Kinect sensor.
Some of the primary use cases are as follows:

• Searching and selecting movie files with Yes/No input,
• Navigating presentation slides with grand gestures,
• Final confirmation in online shopping, etc.

The above examples require stable and accurate, discrete input rather
than the free movements that may come from a mouse or touch
panel.
The proposed algorithm, AccuMotion, realizes accurate motion recog-
nition of natural movements for a wide range of users. This recog-
nition algorithm is based on multiple kinematics evaluation func-
tions based on taking the dot products of a target bone positionTi
and the user bone positionVi .
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K is the number of bones, which total 20 per user for the Microsoft
Kinect SDK. Each evaluation functionf0, f1,...,fn continuously
outputs a similarity ratio for comparing the user’s posture as a ag-
gregate of bone positions to a target posture that the developers
define by ideal or arbitrary values.
Human movement can be described as a non-discrete process. In
order to separate a motion representing a deliberate command from
unintentional natural motion, a precursor or sequential gesture (sim-
ilar to holding down the mouse button before a drag operation) can
be useful as a temporal ready state. However, the duration of the
ready state may be inconsistent and difficult to define due to differ-
ences in the movements of various users.

Figure 2: Principle: Target gestureTi and user’s current oneVi

Each evaluation function represents a key pose in the AccuMotion
algorithm. In a test application, for instance,f0 defined the starting
pose for the input of a deliberate command by raising the right hand
in front.
f1 to f4 were defined as moving the right hand up, to the right,
down, and to the left, respectively. If the similarity ratio evaluates
to be greater than the thresholdPn, the result is recognition of the
input as a command, such as in a step function. These functions
can be interpreted as still motion classifiers; however, they also
misinterpret natural motions that match the target poses, resulting



in false recognition of commands. AccuMotion defines absolute
ordinal structures for each function and limits command input to
the f0 switch before evaluating thef1 to f4 functions. This simple
change results in a very simple, stable and accurate method that is
relatively faster compared to matching algorithms for various users
with various commands. Visual feedback for this method may re-
quire flashing the screen or issuing a beep upon the successful de-
tection of f0 as opposed to the appearance of a cursor or pointer in
other methods.
AccuMotion is applicable to a wide range of users due to its ba-
sis on kinematics data that allows for differences in length of user
bones. Identical target positions may be used for users of differing
height through the use of a generic algorithm and user profiling.

4. VERIFICATION
To verify the algorithm, the recognition function was tested for four
directional inputs indicated by user arm movements. For this pur-
pose, a test application using the proposed algorithm was developed
and employed in an experiment environment as shown in figure 3.
With the Kinect sensor placed at a height of 75 cm, the subject
performed input commands from a distance of 2.5 to 3.0 meters
from the sensor so as to achieve full body capture.

Figure 3: Experiment setup

Figure 4: A screenshot of the AccuMotion test application

The experimental tasks included the input of four unique direc-
tional commands performed together as one set five times for a
total of 20 directional commands.
For each functionf0 to f4, the respective command poses (the ready
pose f0, and up, right, down, and left posesf1 to f4) were set by
a researcher. Each thresholdPn was set by the researchers to 94%
or 95% (Table 1). The required hold duration was set to 1 second.
When f0 surpassedp0, visual feedback was set to turn the screen
background from blue to white (figure 4).

Table 1: Commands and thresholds of the evaluation functions

fn Commands Pn:threshold offn(%)
f0 Starting 94
f1 Up 94
f2 Right 95
f3 Down 94
f4 Left 95

Figure 5: The flow of “AccuMotion” shows the tracking of se-
quential key poses as accumulated motion

At the beginning of the experiment, the subject was given simple
instructions from the researcher to quickly input the four directional
commands, and was then allowed to practice each of the four com-
mands with a single set of input operations.
When inputting commands, the subject would first assume the ready
pose (f0) for 1 second. When this pose is recognized, the screen
background color would change from blue to white and the up,
down, left, and right commands become enabled. At this time, the
four directional commands being displayed must be input in order.
Denoting a set of four directional commands as one task, the re-
quired time for performing five tasks was measured. If a command
was particularly difficult for a user, the experiment would have a
longer duration. After finishing, the user’s impressions were then
gathered orally.
The subjects included one female and 12 males aged 20 to 38 be-
tween the heights of 150 to 180 cm. The same target posture data
for the evaluation functions was used for all subjects without any
changes done according to a subject’s gender or body type.
Results are shown in figure 6 and 7. With one set of four commands
being one task and the duration being the time it took for tasks T1
to T5, the mean duration of all the subjects was 11.6 seconds with a
standard deviation of± 7.5 seconds. This suggests that many of the
subjects could understand the input method and perform the tasks
both quickly and accurately.
It can be seen that although many subjects required significant time
for the first command, the input time for the first command of each
successive task became progressively shorter (figure 7). Opera-
tional proficiency can be confirmed for 92% of the subjects follow-
ing the successive repetitions of T1 (mean = 14.2 sec.) to T5 (mean
= 10.9 sec). For 84% of the subjects, their individual standard devi-
ations were within± 4 seconds and the largest standard deviation
was 8.29 seconds (subject M). None of the users triggered a false
recognition during this experiment. These results suggest the pro-
posed algorithm achieves the reliable performance of accurate input
commands for a wide range of users.



Figure 6: Operational durations and proficiency of various
users

In the post-experiment interview, many subjects expressed a dif-
ference in the input recognition for left-and-right movements. The
threshold values for these commands (P2, P4) should be adjusted.
In this experiment, the recognition function was tested with four di-
rectional input commands performed by user arm movements. The
results suggest this method is suitable for navigating presentation
software with solid reliability. It can be used to control slides and
video playback with gestures free of any false recognition.

Figure 7: Individual duration and standard deviations

5. APPLICATION

5.1 Presentation by NUI
AccuMotion can be effectively employed in a presentation appli-
cation with a spatial gesturing interface. Faulty operation of the
interface can be dramatically reduced when using AccuMotion and
make it feel more natural. Considering the possible gesture com-
mands for a presentation, some options might be “right hand right”
for “next slide” and “right hand left” for “previous slide”. Without
using the AccuMotion technique, when the control hand returns
immediately following the transition, there is a high likelihood that
a faulty “previous slide” command will register. Additionally, nor-
mal gesticulation during a presentation may cause false recognition

of commands. This problem is solved by using accumulated key
poses as a solution.

5.2 Controlling home electronics devices by NUI
This technique may be applied to not only PC applications but also
home appliances. For example, the proposed algorithm can be used
to browse video files on a playback device. As a sensing algorithm
aimed at an everyday living space, the proposed algorithm is also
useful for preventing input malfunctions. For the purpose of feed-
back for the accumulated motion recognition in the video recorder
application, the command that navigates to the menu screen from
the video playback display can be used in place of the color chang-
ing screen that was used during the experiment. The bent right arm
pose was reliable used for selecting an icon (figure 8).

Figure 8: Controlling home electronics devices by NUI

5.3 Future applications
The AccuMotion algorithm is flexible enough to provide steady
NUI experiments using only a few parameters to target a wide range
of users. In the experiment described above, the target poses and
thresholdsPn were set by the researchers. However, there are other
ways to decidePn, such as by letting the user set the target poses
and recognition difficulty, or findingPn based on the application
of computer science learning theories to determine the independent
bounds of each gesture. Furthermore, this technique is not limited
to gestures in the four directions. By linking each target pose, more
complicated operations (such as text or analog inputs) become pos-
sible. In this way, existing virtual environments and applications
for people with disabilities can make use of a simple sensing sys-
tem for a wider range of users, devices, and environments.

6. CONCLUSION
The authors have proposed an intuitive recognition algorithm for
accumulated dynamic motion called “AccuMotion”. Using this al-
gorithm, firm and accurate input commands have been realized for
a wide range of users with different arm and body lengths. Ac-
cuMotion employs the Kinect sensor to manage sequential poses
of differing durations according to a simple parameter structure of
target poses and threshold values. Hereafter, the authors hope to
extend the applications for a new kind of interactive living with



practical implementations of this algorithm in home appliances and
everyday living environments.
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